If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2-9u-18=0
a = 5; b = -9; c = -18;
Δ = b2-4ac
Δ = -92-4·5·(-18)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-21}{2*5}=\frac{-12}{10} =-1+1/5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+21}{2*5}=\frac{30}{10} =3 $
| 22x+4=23+1 | | x2−9x+18=0 | | 51-3t=11 | | 6=10j+36 | | 5x=7=3 | | 130-y=24000 | | G40=8-16k | | F(x)=100/40 | | 3/4(x)−1.72=−6.82 | | 2,5x+3=3x+2,5 | | F(x)=100/20 | | 7=6+m/8 | | 6y+2+(2y+7)=12y-11 | | 5^x+0.5x=26 | | 7x+3=12x-12 | | 3^x=128 | | 3x+12=14+6x | | (x+2)/6=(x+5)/3 | | 130x+200+350=24000 | | 15=12-y | | 12x+6=25x-1 | | 2x=-33 | | (12x+6)+(25x-1)=180 | | 1/4x=6/8 | | 0=3y^2+2y+15 | | x(11-8)=13 | | 10+2x=16+x | | 48=6a | | -10x+2=18 | | 1/3x+1/5x=8 | | 14y-9-5y-2=61 | | 3x+7+2x-1=36 |